Successful Predictions

This talk, by Ray Pierrehumbert, is an excellent response to Naomi Oreskes’ observation that: “climate scientists are so busy talking about stuff they don’t understand that they never get around to taking credit for what they got right.

UPDATE: Steve Easterbrook has compiled a helpful list of the successful predictions in Ray Pierrehumbert’s talk:

Here are the sucessful predictions:

1896: Svante Arrhenius correctly predicts that increases in fossil fuel emissions would cause the earth to warm. At that time, much of the theory of how atmospheric heat transfer works was missing, but nevertheless, he got a lot of the process right. He was right that surface temperature is determined by the balance between incoming solar energy and outgoing infrared radiation, and that the balance that matters is the radiation budget at the top of the atmosphere. He knew that the absorption of infrared radiation was due to CO2 and water vapour, and he also knew that CO2 is a forcing while water vapour is a feedback. He understood the logarithmic relationship between CO2 concentrations in the atmosphere and surface temperature. However, he got a few things wrong too. His attempt to quantify the enhanced greenhouse effect was incorrect, because he worked with a 1-layer model of the atmosphere, which cannot capture the competition between water vapour and CO2, and doesn’t account for the role of convection in determining air temperatures. His calculations were incorrect because he had the wrong absorption characteristics of greenhouse gases. And he thought the problem would be centuries away, because he didn’t imagine an exponential growth in use of fossil fuels.

Arrhenius, as we now know, was way ahead of his time. Nobody really considered his work again for nearly 50 years, a period we might think of as the dark ages of climate science. The story perfectly illustrates Paul Hoffman’s tongue-in-cheek depiction of how scientific discoveries work: someone formulates the theory, other scientists then reject it, ignore it for years, eventually rediscover it, and finally accept it. These “dark ages” weren’t really dark, of course – much good work was done in this period. For example:

  • 1900: Frank Very worked out the radiation balance, and hence the temperature, of the moon. His results were confirmed by Pettit and Nicholson in 1930.
  • 1902-14: Arthur Schuster and Karl Schwarzschild used a 2-layer radiative-convective model to explain the structure of the sun.
  • 1907: Robert Emden realized that a similar radiative-convective model could be applied to planets, and Gerard Kuiper and others applied this to astronomical observations of planetary atmospheres.

This work established the standard radiative-convective model of atmospheric heat transfer. This treats the atmosphere as two layers; in the lower layer, convection is the main heat transport, while in the upper layer, it is radiation. A planet’s outgoing radiation comes from this upper layer. However, up until the early 1930′s, there was no discussion in the literature of the role of carbon dioxide, despite occasional discussion of climate cycles. In 1928, George Simpson published a memoir on atmospheric radiation, which assumed water vapour was the only greenhouse gas, even though, as Richardson pointed out in a comment, there was evidence that even dry air absorbed infrared radiation.

1938: Guy Callendar is the first to link observed rises in CO2 concentrations with observed rises in surface temperatures. But Callendar failed to revive interest in Arrhenius’s work, and made a number of mistakes in things that Arrhenius had gotten right. Callendar’s calculations focused on the radiation balance at the surface, whereas Arrhenius had (correctly) focussed on the balance at the top of the atmosphere. Also, he neglected convective processes, which astrophysicists had already resolved using the radiative-convective model. In the end, Callendar’s work was ignored for another two decades.

1956: Gilbert Plass correctly predicts a depletion of outgoing radiation in the 15 micron band, due to CO2 absorption. This depletion was eventually confirmed by satellite measurements. Plass was one of the first to revisit Arrhenius’s work since Callendar, however his calculations of climate sensitivity to CO2 were also wrong, because, like Callendar, he focussed on the surface radiation budget, rather than the top of the atmosphere.

1961-2: Carl Sagan correctly predicts very thick greenhouse gases in the atmosphere of Venus, as the only way to explain the very high observed temperatures. His calculations showed that greenhouse gasses must absorb around 99.5% of the outgoing surface radiation. The composition of Venus’s atmosphere was confirmed by NASA’s Venus probes in 1967-70.

1959: Burt Bolin and Erik Eriksson correctly predict the exponential increase in CO2 concentrations in the atmosphere as a result of rising fossil fuel use. At that time they did not have good data for atmospheric concentrations prior to 1958, hence their hindcast back to 1900 was wrong, but despite this, their projection for changes forward to 2000 were remarkably good.

1967: Suki Manabe and Dick Wetherald correctly predict that warming in the lower atmosphere would be accompanied by stratospheric cooling. They had built the first completely correct radiative-convective implementation of the standard model applied to Earth, and used it to calculate a +2C equilibrium warming for doubling CO2, including the water vapour feedback, assuming constant relative humidity. The stratospheric cooling was confirmed in 2011 by Gillett et al.

1975: Suki Manabe and Dick Wetherald correctly predict that the surface warming would be much greater in the polar regions, and that there would be some upper troposphere amplification in the tropics. This was the first coupled general circulation model (GCM), with an idealized geography. This model computed changes in humidity, rather than assuming it, as had been the case in earlier models. It showed polar amplification, and some vertical amplification in the tropics. The polar amplification was measured, and confirmed by Serreze et al in 2009. However, the height gradient in the tropics hasn’t yet been confirmed (nor has it yet been falsified – see Thorne 2008 for an analysis)

1989: Ron Stouffer et. al. correctly predict that the land surface will warm more than the ocean surface, and that the southern ocean warming would be temporarily suppressed due to the slower ocean heat uptake. These predictions are correct, although these models failed to predict the strong warming we’ve seen over the antarctic peninsula.


  1. Pingback: My Successful Predictions | Real Science

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>